Adaptive Control Designed via Deterministic Excitation

ZHANG Jifeng
(Institute of Systems Science, Academia Sinica, Beijing, 100080, PRC)

CHEN Hanfu
(Institute of Systems Science, Academia Sinica, Beijing, 100080, PRC)

Abstract: This paper considers the parameter estimation and adaptive stabilization problems for linear discrete-time systems with unknown parameters and bounded disturbances. The a-priori knowledge for designing adaptive controllers is only the order of the system. No assumption is required except controllability and observability of the system. The excitation signals are deterministic, and hence, no external stochastic excitation signal is applied.

Key words: adaptive control; deterministic excitation; stabilization; discrete-time

1 Introduction

Consider the linear single-input single-output discrete-time system

\[A(z)y_n = zB(z)u_n + w_n, \quad \forall n \geq 0, \]

(1.1)

where \(y_n, u_n \) and \(w_n \) are the system output, input and unknown disturbance, respectively. \(A(z) \) and \(B(z) \) are polynomials in backward shift operator \(z \):

\[A(z) = 1 + a_1 z^{-1} + \cdots + a_p z^{-p}, \quad p \geq 0, \quad a_p \neq 0, \]

(1.2)

\[B(z) = b_1 z^{-1} + \cdots + b_q z^{-q}, \quad q \geq 1, \quad b_q \neq 0 \]

(1.3)

and

\[\theta = [-a_1 \ldots -a_p \ b_1 \ldots b_q]^T \]

(1.4)

is the unknown parameter of the system. The disturbance \(w_n \) is of arbitrary nature; deterministic or stochastic. Assume that \(\{w_n\} \) satisfies the following long run average condition

\[\sup_{n \geq 0} \frac{1}{n+1} \sum_{j=0}^{n} w_j^2 < \infty, \]

(1.5)

or satisfies the more restrictive condition

\[\sup_{n \geq 0} |w_n| < \infty. \]

(1.6)

The problem of adaptive stabilization consists in designing control aiming at stabilizing the system with unknown parameters. For system (1.1) with \(w_n = 0 \), the problem was discussed in [1~4] and others. When \(w_n \) is not identically equal to zero, the problem is usually solved under conditions more than coprimeness of \(A(z) \) and \(zB(z) \), which as well-known is sufficient for non-
adaptive stabilization \([5\sim 8]\). To the authors' knowledge, under the coprimeness condition only, the problem has first been solved in \([9]\) for system \((1.1)\) with \(\{w_k\}\) being a martingale difference sequence. As in many previous works summarized by Chen and Guo\([10]\), the excitation signals used in \([9]\) are stochastic processes, which, generally speaking, are more difficult to deal with than deterministic ones.

In this paper, under the assumption that \(A(z)\) and \(zB(z)\) are coprime, we give adaptive controls via deterministic excitation signal such that

\[
\sup_{n \geq 0} \frac{1}{n+1} \sum_{j=1}^{n} (y_j^+ + u_j^-) < \infty
\]

(1.7)

for the case where \((1.5)\) holds and

\[
\sup_{n \geq 0} (|y_n| + |w_n|) < \infty
\]

(1.8)

for the case where \((1.6)\) is satisfied.

Throughout the paper, for a polynomial \(X(z) = \sum_{i=0}^{s} a_i z^i\), the norms \(|| \cdot ||_1\) and \(|| \cdot ||_2\) are defined as follows

\[
|| X(z) ||_1 = \sum_{i=0}^{s} |a_i| \quad \text{and} \quad || X(z) ||_2 = \left(\sum_{i=0}^{s} |a_i|^2 \right)^{1/2}.
\]

2 Estimation and Adaptive Control

We estimate the unknown parameter \(\theta\) by the LS algorithm which recursively defines the estimate \(\hat{\theta}_n\) as follows:

\[
\begin{align*}
\hat{\theta}_{n+1} &= \hat{\theta}_n + \mu P_{n+1} (y_{n+1}^+ - \hat{\varphi}_n \hat{\theta}_n), \\
P_{n+1} &= P_n - \mu P_n \hat{\varphi}_n \hat{\varphi}_n^T P_n, \\
\mu &= (1 + \hat{\varphi}_n^T P_n \hat{\varphi}_n)^{-1}, \\
\hat{\varphi}_n &= \begin{bmatrix} y_n & \cdots & y_{n-p+1} & u_n & \cdots & u_{n-p+1} \end{bmatrix}
\end{align*}
\]

(2.1) - (2.3)

with \(P_0 = I\) and arbitrary initial value

\[
\hat{\theta}_0 = [a_0 \cdots a_p b_0 \cdots b_p].
\]

For any \(n \geq 0\) write \(\theta_n\) in the component form

\[
\begin{bmatrix} \theta_n \end{bmatrix} = \begin{bmatrix} a_n \cdots a_p \ b_n \cdots b_p \end{bmatrix}.
\]

(2.4)

If \(A(z)\) and \(zB(z)\) are coprime, then there exist two polynomials

\[
G(z) = 1 + \sum_{j=1}^{r} g_j z^j, \quad H(z) = \sum_{j=0}^{r} h_j z^j
\]

(2.5)

such that

\[
A(z)G(z) - zB(z)H(z) = 1.
\]

(2.6)

Replacing \(a_i, b_j, g_k, h_k\) by their estimates \(a_n, b_n, g_n\) and \(h_n\) respectively in \(\hat{\theta}_n\), \((1.2)\), \((1.3)\), \((2.5)\), \(i=1, \cdots, p, j=1, \cdots, s, k=1, \cdots, q-1, l=0, \cdots, p-1\), we correspondingly denote \(A(z), B(z), G(z)\) and \(H(z)\) by \(A_n(z), B_n(z), G_n(z)\) and \(H_n(z)\), respectively, for example,

\[
A_n(z) = 1 + a_{n} z + \cdots + a_{p} z^p.
\]

We need the following two lemmas proved in Chen and Zhang\([6]\).

Lemma 1. If \(A(z)\) and \(zB(z)\) are coprime, then there is a constant \(a_0 > 0\) such that for any \(\hat{\theta}_n\) satisfying \(|| \hat{\theta}_n - \theta_0 || \leq a_0\), the following Bezout equation

\[
\text{has a unique solution}
\]

and

\[
\text{for } i = 1 \text{ or } 2.
\]

Lemma 2. \((1.5)\). Then the eigenvalue of \(P_{n+1}^{-1} \hat{\varphi}_n\)

From \((2.6)\)

and

From this we see that \((1.6)\), the system is

The "certainty equaling certainty" equivalency.

However, in the case that \(1+|\hat{\varphi}_n^T P_n \hat{\varphi}_n|\) is not known whether it is less than 1, we cannot know whether the adaptive control can adequately stabilize the system or provoke an explosive excitation signal. Therefore, the stabilization period longer than \(\tau\), at which the system breaks with explosive excitation instability, is most important.

No.2
\(A_c(z) G_c(z) - z B_c(z) H_c(z) = 1 \) \((2.7) \)

has a unique solution \((G_c(z), H_c(z))\) satisfying
\(\deg(G(z)) \leq q - 1 \), \(\deg(H(z)) \leq p - 1 \) \((2.8) \)

and
\[||G_c(z)|| + ||H_c(z)|| \leq 1 + ||G(z)|| + ||H(z)||, \] \((2.9) \)

for \(i = 1 \) or 2.

Lemma 2 Let \((u_t)\) in \((1.1)\) be any disturbance (deterministic or stochastic) satisfying \((1.5)\). Then the LS estimate \(\hat{\theta}_n\) for \(\theta\) has the following properties
\[||\hat{\theta}_n - \theta||^2 \leq \frac{||\hat{\theta}_n - \theta||^2 + 2nW}{\lambda_{min}^{(n-1)}} \quad \forall \quad n \geq 0, \] \((2.10) \)

where \(W = \sup_{a \geq 0} \frac{1}{a+1} \sum_{t=0}^{a} u_t^2 < \infty\) by condition \((1.5)\) or \((1.6)\), and \(\lambda_{min}\) denotes the minimum eigenvalue of \(P_{\theta} = I + \sum_{i=1}^{n} \theta_i \theta_i^T\).

From \((2.6)\) it is clear that
\[y_t = A(z)G(z)u_t - zB(z)H(z)u_t \]
\[= G(z)[A(z)u_t - zB(z)u_t] + zB(z)[G(z)u_t - H(z)y_t] \]
\[= G(z)u_t + zB(z)[G(z)u_t - H(z)y_t] \] \((2.11) \)

and
\[u_t = H(z)u_t + A(z)[G(z)u_t - H(z)y_t]. \] \((2.12) \)

From this we see that in the case where \(\theta\) is known and \(u_t\) is bounded in the sense \((1.5)\) or \((1.6)\), the system will be stabilized in the sense \((1.7)\) or \((1.8)\) if \(u_t\) is defined from
\[G(z)u_t - H(z)y_t = 0. \] \((2.13) \)

The "certainty equivalence principle" suggests us defining adaptive control from
\[G_c(z)u_t - H_c(z)y_t = 0. \] \((2.14) \)

However, in the present case the closeness of \(\hat{\theta}_n\) to \(\theta\) is not guaranteed. Consequently, it is not clear if \((2.7)\) is solvable or not. Even if \(G_c(z)\) and \(H_c(z)\) can be defined from \((2.7)\) we still do not know whether or not they are close to \(G(z)\) and \(H(z)\) respectively. So it is important that \(\hat{\theta}_n\) somehow approximates \(\theta\). If this is the case, then adaptive control defined by \((2.14)\) may hopefully stabilize the system. By lemma 2 we see that for first step of approximating \(\theta\) we may apply an explosive excitation input, by which we mean such an input that yields \(\lambda_{min}/n \rightarrow \infty\). However, the stabilization purpose \((1.7)\) or \((1.8)\) does not allow us to apply such an input for a period longer than finite. Thus we need to define stopping times \(\tau_1\) at which we turn off the explosive excitation input and switch on the control defined by the certainty equivalence principle until \(\tau_1\), at which the accuracy of the LS estimate \(\hat{\theta}_n\) becomes unsatisfactory and we have to apply the explosive excitation input again. After defining stopping times
\[0 \Delta \tau_0 < \tau_1 < \tau_2 < \tau_3 < \cdots, \]
for \(i = 1, 2, \ldots\), it is most important to show that there is some integer \(i\) such that \(\sigma_i < \infty\) and \(\tau_i = \infty\), because oth-
otherwise the requirement (1.7) or (1.8) will never be met.

Let \(\{s_n\} \) be a real sequence with the following properties:

\[
0 < \epsilon_n < 1, \quad s_n \to 0, \quad \epsilon_n \xi > 1,
\]

where \(\xi > 1 \) is chosen arbitrarily.

We now consider the case where (1.5) holds.

Define stopping times as follows:

\[
\sigma_i = \min \{ n > \sigma_{i-1} \sum_{j=0}^{\infty} p_j p_j - n^2 \epsilon_j s > 0 \}
\]

(2.7) subject to (2.8) is solvable, where

\[
H_\sigma(x) = \sum_{j=0}^{\infty} (y_j - p_j \sigma_j) s_j \leq \epsilon \xi \sigma_j (\xi^2) s
\]

(2.16)

\[
\tau_n = \min \{ n > \sigma_i \sum_{j=0}^{\infty} (y_j - p_j \sigma_j) s_j \leq \epsilon \xi \sigma_j (\xi^2) s \}
\]

(2.17)

where \(\gamma = \max \{ p, q \} \) and \(\sigma_j \) is given by \(\sigma_j = 1 \),

\[
s_0(x) = \max \{ 1 > \sum_{k=0}^{\infty} (y_k + u_k) \}, \quad k = 1, \ldots, n, \quad \forall n \geq 1.
\]

(2.18)

Finally, adaptive control \(u_n \) at time \(n \) is given by

\[
u_n = \begin{cases}
\alpha', & \text{if } n \in [\sigma_i, \sigma_{i+1}) \text{ and } s_n = n + 2k(p+q) + q + k \text{ for some } i \geq 0 \text{ and } k \geq 0; \\
0, & \text{if } n \in [\sigma_i, \sigma_{i+1}) \text{ for some } i \geq 0 \text{, but not for all } k \geq 0; \\
H_{\sigma_j}(x) + (\sigma_j - 1)u_n, & \text{if } n \in [\sigma_i, \sigma_{i+1}) \text{ for some } i \geq 1.
\end{cases}
\]

(2.19)

In the following lemma we introduce a deterministic excitation signal which is much simpler to be proved explosive in comparison with the stochastic one used in [9] and [11].

Lemma 3 If \(A(x) \) and \(zB(x) \) are coprime, (1.5) holds and

\[
u_n = \begin{cases}
\alpha', & \text{if } n = 2k(p+q) + q + k \text{ for } k = 0, 1, \ldots; \\
0, & \text{otherwise},
\end{cases}
\]

(2.20)

where \(\alpha > 1 \) can be arbitrarily chosen, then for any \(n \geq 2(p+q) \),

\[
\epsilon_n \xi > \frac{\gamma}{\delta} \eta \sigma_j (\xi^2) + \xi \sigma_j (\xi^2) s
\]

(2.21)

with \(C = (p+1)(1 + \sum_{j=0}^{\infty} q_j) \), \(\gamma \) and \(\delta \) defined in (2.24) below.

Proof Set \(\Phi_n = A(x) \phi_n \) and \(D = [D_0, D_1, \ldots, D_s] \), where

\[
D_0 = \begin{bmatrix} 0 & b_1 & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots & \cdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0
\end{bmatrix}
\]

From (2.20) it is clear that

\[
\lambda_{\min} \left(\sum_{n=0}^{\infty} u_n \right) < \lambda_{\max}
\]

where

\[
W \triangleq \sup_{n \geq 0} \frac{1}{n+1}
\]

On the other hand,

\[
\lambda_{\min} \left(\sum_{n=0}^{\infty} u_n \right) > \lambda_{\max}
\]

which together with the result above implies that

\[
\lambda_{\min} \left(\sum_{n=0}^{\infty} u_n \right) = \lambda_{\max}
\]

where

\[
\lambda_{\min} \left(\sum_{n=0}^{\infty} u_n \right) < \lambda_{\max}
\]

From this and (2.20) it is clear that

\[
\lambda_{\min} \left(\sum_{n=0}^{\infty} u_n \right) = \lambda_{\max}
\]
and

\[
D\bar{\Phi} = \begin{bmatrix}
1 & \cdots & a_1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & 1 & \cdots & a_p \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

From (1.1) it is easy to see that

\[
\Phi_s = Dw_s + W_s,
\]

where

\[
U_s = \begin{bmatrix} u_s & \cdots & u_{s-(\ell+1)} \end{bmatrix}, \quad W_s = \begin{bmatrix} w_s & \cdots & w_{s-p+1} \end{bmatrix}
\]

Let \(k \) be the largest integer such that \(2(\ell + 1)(p + q) \leq n_s \), and set \(n_s = 2k(p + q) \). Then it is not difficult to see that for any \(\eta \in R^{\ell+p} \) with \(\| \eta \| = 1 \),

\[
\sum_{i=1}^{n_s} \| \eta^T \Phi_i \|_2 \geq \frac{1}{2} \sum_{i=1}^{n_s} \| \eta^T D_i \|_2 - \sum_{i=1}^{n_s} \| \eta^T W_i \|_2,
\]

which together with the fact \(\delta \lambda_{\text{min}}(DD^T) > 0 \) implies that

\[
\lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \| \eta^T \Phi_i \|_2^2 \right) \geq \frac{1}{2} \lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \| \eta^T D_i \|_2^2 \right) - \lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \| \eta^T W_i \|_2^2 \right)
\]

\[
\geq \frac{1}{2} \lambda_{\text{min}} (DD^T) \lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \| \eta^T U_i \|_2^2 \right) - p(n_s - 1)p - 2p + 2q \leq 0,
\]

where \(W_{\text{sup}} \leq \frac{1}{2} \sum_{i=1}^{n_s} w_i^2 < \infty \) by condition (1.5) or (1.6).

On the other hand, we have

\[
\lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \eta^T \Phi_i \|_2^2 \right) = \inf_{\| \eta \| = 1} \sum_{i=1}^{n_s} (\eta^T \Phi_i)^2
\]

\[
\leq \lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \Phi_i \|_2^2 \right) \left[\sum_{i=1}^{n_s} \Phi_i \right] \left(p + 1 + \sum_{i=1}^{n_s} \| \Phi_i \|_2^2 \right),
\]

which together with (2.24) yields

\[
\lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \Phi_i \|_2^2 \right) \geq \frac{1}{2} \lambda_{\text{min}} \left(\sum_{i=1}^{n_s} \| U_i \|_2^2 \right) - pC^{-1} W_n,
\]

where

\[
C = (p + 1)\left(1 + \sum \frac{1}{2} \right).
\]

From (2.20) it is easy to get that

\[
\sum_{i=1}^{n_s} U_i \|_2^2 = \sum_{i=1}^{n_s} \| \Phi_i \|_2^2 (1 + \sum \frac{1}{2}) \geq \delta^2 \lambda_{\text{min}} (DD^T),
\]

From this and (2.25) we obtain (2.21).
3 Main Results

Theorem 1 If $A(z)$ and $B(z)$ are coprime, and disturbance $\{u_i\}$ is bounded in the sense (1.5), then the adaptive control (2.19) stabilizes the closed-loop system in the following sense:

$$\sup_{n \to \infty} \frac{1}{n+1} \sum_{j=0}^{n} (\eta_j - w_j) < \infty$$

for arbitrary initial values $y_i = 0, -1, \ldots, -p$, $u_j = 0, -1, \ldots, -q$.

Proof The first step is to show that there exists an integer $i \geq 1$ such that $\sigma_{i+1} = \infty$ and $\tau_i = \infty$.

We now note that it is impossible that $\tau_i < \infty$ and $\sigma_{i+1} = \infty$. In fact, if there were an $\zeta > 0$ such that $\tau_i < \infty$ and $\sigma_{i+1} = \infty$, then by (2.19) we get

$$u_i = \begin{cases} \sigma_i, & \text{if } n = \tau_i + 2k(p+q) + p + q \text{ for some } k \geq 0, \\ 0, & \text{if } n > \tau_i, \text{ but } n \neq \tau_i + 2k(p+q) + p + q \text{ for all } k > 0. \end{cases}$$

(3.2)

Hence, by Lemmas 2 and 3 we would have that for any $n > \tau_i + 2(p+q)$,

$$\| \tilde{\theta}_n \| < \frac{\| \tilde{\theta}_0 \| + 2W_n}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)}$$

and

$$\sigma_i > \frac{\| \tilde{\theta}_0 \| + 2W_n}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)} - \frac{2W_n}{\sigma_{i+1}}$$

where

$$\tilde{\theta}_n = \frac{\theta_n - \theta_{\tau_i}}{\sigma_{i+1}}.$$

From this, Lemma 1 and (2.15) we see that all requirements except the last inequality listed in (2.16) are met for all $n \geq N_0$ starting from some integer $N_0 > \tau_i + 2(p+q)$.

Set $c_0 = \sum_{n=0}^{N_0} (\eta_j - w_j)$. Then by (1.1), (2.18), (3.3) and (1.5) we obtain that for any $n \geq N_0$,

$$\sum_{j=0}^{n-1} (\eta_j - \eta_{j-1} \theta_i)^2 \leq 2 \sum_{j=0}^{n-1} (\eta_j - \theta_i)^2 + 2 \sum_{j=0}^{n-1} w_j^2$$

$$\leq 2y \left[c_0 (\sigma_0^2) + c_0 \right] \| \theta_i \| + 2W_n$$

$$\leq c_0 \left(1 + \frac{c_0}{\sigma_0^2} \right) \left(\frac{2y}{\sigma_0^2} \right) \left[\frac{\| \tilde{\theta}_0 \| + 2W_n}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)} + \frac{2W_n}{\sigma_{i+1}} \right]$$

(3.4)

which together (2.15) implies that there exists an integer $N_i > N_0$ such that for any $n > N_i$,

$$\sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_j - \theta_i)^2 \leq 2c_0 \sigma_i^2.$$

Therefore, we have $\sigma_{i+1} = \infty$. This contradicts $\sigma_{i+1} = \infty$.

We now prove that $\tau_i = \infty$ for some i.

By Lemma 2 we see that

$$\| \tilde{\theta}_n \| < \frac{\| \tilde{\theta}_0 \| + 2W \sigma_i}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)}$$

which incorporating the definition of σ_i implies that

$$\| \tilde{\theta}_n \| < \frac{\| \tilde{\theta}_0 \| + 2W \sigma_i}{\sigma_i^2}$$

(3.5)

Similar to (3.4), by (3.5), (2.15), (2.18) we obtain that

$$\sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_j - \theta_i)^2 \leq 2 \sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_0)^2 + 2 \sum_{j=0}^{n-1} w_j^2$$

which together with $\sigma_{i+1} = \infty$ one has

$$\| \tilde{\theta}_n \| < \frac{\| \tilde{\theta}_0 \| + 2W \sigma_i}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)}$$

(3.7)

Therefore, there is no n.

The second step is to show that $\tau_{i+1} = \infty$.

By (2.7) we get

$$y_i = \frac{\sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_0)^2}{\sigma_{i+1}}$$

$$\tilde{\theta}_n = \frac{\eta_n - \tilde{\theta}_0}{\sigma_{i+1}}.$$

Hence, from (2.15), (2.17) we obtain that

$$\sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_j - \theta_i)^2 \leq \frac{2}{\sigma_{i+1}} \sum_{j=0}^{n-1} (\eta_j - \tilde{\theta}_0)^2 + \frac{2W_n}{\sigma_{i+1}}$$

From (3.7) we have

$$\frac{\| \tilde{\theta}_0 \| + 2W \sigma_i}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)}$$

$$\leq \frac{1}{\sigma_{i+1}}$$

where

Noticing that

$$\sigma_{i+1} > \infty$$

which together with

$$\sigma_{i+1} > \frac{1}{\lambda_{\max} \left(1 + \frac{1}{\sigma_{i+1}} \right)}$$

Set

$$\sigma_{i+1} = \infty.$$

Then (3.10) implies

which means
\[
\leq C_{n} \varphi_{n}(a^m) \left[\left(1 + \frac{C_{0}}{a^m} \right) + \frac{1}{\alpha_{i}} \frac{d}{d_{i}} + \frac{2W_{1}}{\sigma_{i}} + \frac{2W_{2}}{\sigma_{i}} \right],
\]

(3.6)

which together with (3.5) and (2.15) implies that for some large enough \(i \geq 1 \) and any \(n \geq n_1 \), one has

\[
\sum_{j=0}^{n-1} (\varphi_{j} - \varphi_{j-1})^2 \leq C_{n} \varphi_{n}(a^m).
\]

Therefore, there must be an \(i \) for which \(\alpha_{i} = \infty \).

The second step is to prove (3.1) by use of the fact that for some \(i, \sigma_{i} < \infty \) and \(\tau_{i} = \infty \).

By (2.7) we have

\[
y_{n} = G_{n}(x)[A_{n}(x)y_{n} - zB_{n}(x)u_{n}] + zB_{n}(x)[G_{n}(x)u_{n} - H_{n}(x)y_{n}],
\]

\[
u_{n} = H_{n}(x)[A_{n}(x)y_{n} - zB_{n}(x)u_{n}] + A_{n}(x)[G_{n}(x)u_{n} - H_{n}(x)y_{n}].
\]

Hence, from (2.19) we get, for any \(n \geq n_{0} \triangleq \max(p, q), \)

\[
y_{n} = G_{n}(x)[A_{n}(x)y_{n} - zB_{n}(x)u_{n}],
\]

(3.7)

\[
u_{n} = H_{n}(x)[A_{n}(x)y_{n} - zB_{n}(x)u_{n}].
\]

(3.8)

From (3.7) and (3.8) it follows that for any \(n \geq n_{0}, \)

\[
\frac{1}{n} \sum_{j=0}^{n-1} (y_{j} + u_{j}) = \frac{1}{n} \sum_{j=0}^{n-1} (y_{j} + u_{j}) + \frac{1}{n} \sum_{j=0}^{n-1} (y_{j} - u_{j})
\]

\[
\leq \frac{1}{n} \left[\|G_{n}(x)\| + \|H_{n}(x)\| \right] \sum_{j=0}^{n-1} (y_{j} - \varphi_{j-1}) + \frac{1}{n} \sum_{j=0}^{n-1} (y_{j} + u_{j})
\]

\[
\leq \frac{1}{n} \sum_{j=0}^{n-1} (y_{j} - \varphi_{j-1}) + c_{1} \leq \frac{\varphi_{n}(a^m)}{n} + c_{1},
\]

(3.9)

where

\[
c_{1} = \sum_{j=0}^{n-1} (y_{j} + u_{j}).
\]

Noticing that \(\frac{\varphi_{n}(a^m)}{n} \) is nondecreasing from (3.9) we get for any \(n \geq n_{0} \) and any \(l \in [n_{0}, n], \)

\[
\frac{1}{n} \sum_{j=0}^{n-1} (y_{j} + u_{j}) \leq \frac{\varphi_{n}(a^m)}{l} + c_{1} \leq \frac{\varphi_{n}(a^m)}{n} + c_{1},
\]

which together with (2.18) yields

\[
\frac{\varphi_{n}(a^m)}{n} \leq \max \left\{ a^m, \frac{1}{l} \sum_{j=0}^{n-1} (y_{j} + u_{j}) \right\}, \quad l = 1, \ldots, n_{0} - 1; \quad c_{1} \leq \varphi_{n}(a^m) + c_{1}.
\]

(3.10)

Set

\[
c_{2} = \varphi_{n}(a^m) + c_{1} + \max \left\{ \frac{1}{l} \sum_{j=0}^{n-1} (y_{j} + u_{j}) \right\}, \quad l = 1, \ldots, n_{0} - 1.
\]

Then (3.10) implies that for any \(n \geq 1, \)

\[
\frac{\varphi_{n}(a^m)}{n} \leq \frac{\varphi_{n}(a^m)}{n} + c_{2},
\]

which means

\[
\frac{\varphi_{n}(a^m)}{n} \leq (1 - \varepsilon_{n})^{-1} c_{2}.
\]
\(s_n(t^m) s \) is bounded, and hence, (3.1) is true. Q. E. D.

We now consider the case where (1.6) holds.

Define stopping times as follows: \(\tau_0 = 0 \), and for any \(i \geq 1 \),
\[
\sigma_i = \min \{ s > \tau_{i-1} : \sum_{j=0}^{i-1} \varphi_j \rho_j \leq s^2 s_{i-1} \} > 0,
\]
then (2.7) subject to (2.8) is solvable,
\[
\| G_s(x) \|_1 + \| H_s(x) \|_1 \lesssim \frac{1}{2y_{m}}.
\]
and
\[
\eta_i = \min \{ s > \sigma_i : \varphi_i - \tilde{\theta}_n \leq e_i \varphi_i, \delta_i \},
\]
where \(\gamma = \max \{ p, q \} \) and \(\delta_i \) is given by \(\delta_i(x) = 1 \),
\[
\delta_i(x) = \max \{ s, |y|, |u|, j = n - i, \ldots, n - 1 \}, \quad \forall \ n \geq 1.
\]

Theorem 2 If \(A(x) \) and \(zB(x) \) are coprime, and disturbance \((w_n) \) is bounded in the sense (1.6), then the adaptive control (2.19) with \(\sigma_i, \tau_i \) given by (3.11) - (3.13) stabilizes the closed-loop system in the following sense
\[
\sup_{n>0} \{ |y|, |u| \} < \infty
\]
for arbitrary initial values \(y_i, u_i, \ i = 0, -1, \ldots, -p, j = 0, -1, \ldots, -q \).

Proof Similar to the argument of Theorem 1 we can show that there is an integer \(i \) such that \(\sigma_i < \infty \) and \(\tau_i = \infty \). Therefore, for any \(n \geq \sigma_i + p \), (3.7) and (3.8) hold, and for any \(n \geq \sigma_i \),
\[
|y| \leq \frac{1}{2y_m} e_i \varphi_i.(2.11)
\]
From (3.7) and (3.15) we see that for any \(n \geq \sigma_i \),
\[
|y| = \| G_s(x) \| \rho_i \| y \| \lesssim |y| \| G_s(x) \|_1 \| \max \{ y_{i+j} - \tilde{\theta}_n \} \|_1 \lesssim e_i \| G_s(x) \|_1 \| \max \{ \delta_i \}.
\]
Similarly, from (3.8) and (3.15) we get
\[
|u| \leq e_i \| H_s(x) \|_1 \| \max \{ \delta_i \},
\]
which together with (3.16) and
\[
\| G_s(x) \|_1 + \| H_s(x) \|_1 \leq \frac{1}{2y_{m}}
\]
yields
\[
\max \{ |y|, |u| \} \leq \frac{1}{2y_m} \max \{ \delta_{i+j} \},
\]
From this and (3.13) it is not difficult to see that
\[
\delta_{i+2n}(2y_m) \leq \frac{1}{2y_m} \sum_{j=1}^{n} \delta_{i+j} \delta_{i+j-1} (2y_m),
\]
which together with Lemma 3 in [4] implies

where \(c \) is a constant.

Remark: \(\tau_i = \infty \) and \(\sigma_i = \infty \).

This together with Proposition 1 implies that the closed-loop system is uniformly stable.

It is clear that

4 Conclusion

For a single-loop control system with disturbances, the controller is designed by a uniform splitting. The closed-loop system is uniformly stable. No matter how complicated the system, the controller stabilizes the system. The use of a uniform splitting is effective.

where c is a constant and depends on γ only. Q. E. D.

Remark Both Theorems 1 and 2 conclude that there is an integer $i \geq 1$ such that $\sigma_i < \infty$ and $\tau_i = \infty$ and for $n > \sigma_i$ the adaptive control is defined from

$$H_n(z)y_n - G_n(z)u_n = 0.$$

This together with (1.1) implies that after a finite number of steps the closed-loop system eventually becomes

$$F(z)y_n = G_n(z)u_n \quad \text{with} \quad F(z) = A(z)G_n(z) - zB(z)H_n(z).$$

It is clear that σ_i, and hence, $F(z)$ depends on $\{u_n\}$.

4 Conclusion Remarks

For a single-input single-output discrete-time system with unknown parameters and bounded disturbances, an indirect adaptive stabilization controller is presented. The construction of the controller is characterized by a deterministic excitation signal sequence and an appropriate time splitting. The a-priori knowledge for designing adaptive controllers is only the order of the system. No matter what the feature of $w(t)$ is, deterministic or stochastic, the adaptive controller stabilizes the closed-loop system. Hence, it is possible to deal with adaptive control problems by use of a unified algorithm, for both deterministic and stochastic systems.

Reference

用确定性激励设计的适应控制

张纪峰

（中国科学院系统科学研究所，中国科学院系统科学研究所
（中国科学院系统科学研究所，中国科学院系统科学研究所

摘要：本文解决参数未知、干扰有界的线性离散时间系统的参数估计和适应镇定问题，设计控制时事先只要求系统的阶已知，系统能控、能观测，设计时所用的外部激励不用随机信号而用确定性信号。

关键词：适应控制，确定性激励；镇定；离散时间系统

本文作者简介

陈翰敏：1987年生，1991年毕业于沈阳大学数学系，后工作于中国科学院数学所，系统科学研究所。曾在中国科学院数学研究所，过程统计研究方面发表论文一百余篇，近十篇在国外期刊上发表，发表专著5本，其中两本在美国出版。现任IFAC 理论委员会副主席，中国数学学会及中国自动化学会常务理事。研究领域为随机系统的辨识、控制、适应控制、递推估计及随机逼近等。